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Our purpose is to provide a mean-field theory for the discrete time-step susceptible-infected-recovered-
susceptible �SIRS� model on uncorrelated networks with arbitrary degree distributions. The effect of network
structure, time delays, and infection rate on the stability of oscillating and fixed point solutions is examined
through analysis of discrete time mean-field equations. Consideration of two scenarios for disease contagion
demonstrates that the manner in which contagion is transmitted from an infected individual to a contacted
susceptible individual is of primary importance. In particular, the manner of contagion transmission determines
how the degree distribution affects model behavior. We find excellent agreement between our theoretical results
and numerical simulations on networks with large average connectivity.
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I. INTRODUCTION

The effect of social connectivity structure on the behavior
of infectious diseases �1� has been of great interest. An im-
portant goal of epidemiology is to reveal the connection be-
tween the network structure of social connections, the
spreading rate of the disease, and the possibility of large
epidemic outbreaks �2,3�. In particular, the degree distribu-
tion Pk, defined as the fraction of individuals having k con-
nections to other individuals, is a key factor in determining
the properties of epidemic spreading. A signature of epide-
miological models is the presence of phase transitions, i.e.,
qualitative changes in behavior, as the degree distribution or
spreading rate is changed �2,3�. For the intensively studied
susceptible-infected-susceptible and susceptible-infected-
recovered �SIR� epidemiological models, the phase transi-
tions between prevalence and extinction of the disease can be
analytically understood, for instance, by using methods of
percolation theory �3�. Surprising consequences of these re-
sults are the lack of an epidemic threshold �4� and virtually
instantaneous spread of the disease �5� for heavy tailed de-
gree distributions.

The purpose of the present paper is to provide both ana-
lytical and numerical results on the discrete time-step
susceptible-infected-recovered-susceptible �SIRS� network
model �6�. In particular, our aim is to reveal the connection
between model behavior and the underlying network struc-
ture. The SIRS model applies to diseases where individuals
cannot obtain permanent resistance against the disease as a
result of frequent mutations of the pathogen, e.g., influenza.
The discrete time-step approach is justified because, on one
hand, it is an approximation to the continuous time case,
while on the other hand, our every day life has a certain
periodicity, e.g., seasonal changes. For the discrete time-step
SIRS model Kuperman and Abramson �6� illustrated the im-
portance of network structure by implementing the model in
the Watts-Strogatz framework �7�. It was found that for a
regular network, �i.e., a topological ring, where each node
has a fixed coordination number�, the stationary state of the
system is a stable fixed point. As network connections are
rewired and random network structure is approached, the

fixed point becomes unstable leading to the appearance of
self-sustained oscillations. It was also conjectured that on
uncorrelated networks the model leads to oscillatory behav-
ior in most cases. In �8� the effect of community structure on
the synchronization properties of the SIRS model was stud-
ied numerically. The presence of oscillatory states makes the
SIRS model particularly interesting, as it provides an ex-
ample of synchronization phenomena on networks. Qualita-
tively, similar phase transitions can be observed, for instance,
in the well-known Kuramoto model �9�.

To account for adaptive behavior in social interactions,
recent work �10� proposed a model where the connection
structure of the network and the disease itself evolve simul-
taneously in time. Using adaptive connection structure, sus-
ceptible individuals are able to avoid contact with infected
ones by rewiring their network connections. Adaptive rewir-
ing leads to regions of bistability, where either a prevalent,
disease-free, or oscillatory phase can exist as illustrated for
both SIR �10� and SIRS models �11�.

In a previous theoretical work on the SIRS model, Girvan
et al. �12� applied Cooke’s discrete time-delay analysis �13�
to model epidemics. Synchronization between coupled com-
munities was examined in �14�.

In the present paper, as an extension of previous numeri-
cal �6� and theoretical �12� works, we investigate the discrete
time-step SIRS model on uncorrelated networks with arbi-
trary degree distributions and provide analytical and numeri-
cal results on the role of time delays, infection rate, and
network structure. We intend to provide a better theoretical
basis for the numerous simulation results �6,8�. It is demon-
strated that the role of applied contagion scheme is of pri-
mary importance and that the model exhibits rich dynamical
behavior, with oscillating solutions and fixed points. In par-
ticular, the contagion scheme determines the connection be-
tween network structure and model behavior. Moreover,
while our theoretical results apply for an annealed case, as-
suming a well mixed population, we find good agreement
with the numerical simulations for a fixed network structure,
provided the average connectivity of the network is suffi-
ciently large.

The outline of the paper is the following. In Sec. II, we
provide a framework for the following theoretical discussion.
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In Secs. III and IV, we examine the analytical properties of
the two most commonly used contagion schemes. In Sec. V,
we compare the obtained results with numerical simulations
of the model on a network with fixed connection structure.
Finally, in Sec. V we summarize our results and give conclu-
sions.

II. FRAMEWORK

We study a model of infectious disease that has three
stages: susceptible S, infected I, and recovered R �6�. Each
individual of the population is represented by a node of the
network categorized into one of these three stages. Interac-
tions between elements of the population are described by
the network connections, and infection can proceed through
them. Each element i in the network is characterized by a
discrete time counter �i=0,1 , . . . ,�I+�R, describing the
phase of the disease. Movement between the classes is gov-
erned by the following rules. A susceptible �S� element i,
whose time counter is by definition �i=0, can become in-
fected if connected to an infected �I� individual. Once in-
fected, the node deterministically goes through a cycle that
lasts �I+�R time steps. In the first �I time steps i is infected
and can transmit the disease to its susceptible neighbors. In
the following �R time steps, infected individuals pass to the
recovered state �R� where individuals are not contagious and
are also immune to the disease. The cycle is finally com-
pleted when individuals return to the susceptible state and
their time counter is set to zero.

Our next step is to specify how infection spreads from an
infected to a susceptible individual along network connec-
tions. In the present paper we consider two scenarios for
disease contagion. The motivation behind this is that the
given framework can be applied to a variety of situations,
e.g., epidemic dynamics in the human population or com-
puter virus spreading on networks. It is a realistic assumption
that local interaction structure in these cases can be quite
different. It is essential to understand both the common fea-
tures and differences arising from implementing different
spreading schemes.

For definition of contagion schemes �6�, we consider a
susceptible node with connectivity k and kinf infected neigh-
bors. Furthermore, we assume that infection probability can
be characterized by a positive spreading rate 0���1. In
the first scenario, which is referred to as linear, the probabil-
ity that the susceptible node becomes infected in a single
time step is �kinf /k. Specifically, a node becomes infected
with probability � if all of its neighbors are infected. �Pre-
vious work �6� for this scheme does not involve the param-
eter �, which is equivalent to taking �=1.� In the second
scenario, referred to nonlinear, we assume that each infected
node spreads the disease to its susceptible neighbors with
probability �. Thus, the probability of infection of the sus-
ceptible node by its infected neighbors at a given time step is
1− �1−��kinf. We note that the linear contagion scheme is
best understood as an approximation to the nonlinear sce-
nario 1− �1−� /k�kinf for small � /k.

The time dependence of network structure is a crucial
problem that needs to be addressed. Within the framework of

uncorrelated networks, we can visualize two fundamentally
different approaches. One possibility is when the network
connections are fixed in time. This situation is relevant when
the time scale of disease spreading is much faster than the
time scale that characterizes the creation and destruction of
new network connections. This situation, for instance, can
describe the spread of computer viruses on the internet. An-
other option is to consider annealed connection structure,
i.e., the network connections are randomly rewired in every
time step, while keeping the coordination number of each
node constant. This assumption is justified if the social inter-
action structure of the population is dominated by random
encounters. In reality, every person has a number of fixed
connections, e.g., family members and colleagues, but also
interacts randomly with the rest of the population, e.g., while
using public transportation. Connectivity of an individual
characterizes both fixed connections and random interac-
tions, where in the annealed approach the latter is assumed to
be more significant.

In the following theoretical discussion we use annealed
approach, assuming that random encounters dominate. While
the annealed network structure is meaningful in itself, it also
provides a mean-field approximation to the fixed case. In Sec
V. we will show that the differences arising from these two
approaches disappear, provided that the average connectivity
of the network is larger than a threshold.

Every uncorrelated network can be fully characterized by
its degree distribution Pk, where Pk is the fraction of nodes
with connectivity k. The state of the system is updated in
discrete time steps. In each time step a fraction of susceptible
individuals can become infected. The fraction of nodes that
have connectivity k and become infected at time step t is
denoted ik�t�. As each infected individual spends exactly �I
time steps in the infected state and �R time steps in the re-
covered state, the fractions of infected, recovered, and sus-
ceptible nodes with connectivity k, denoted Ik, Rk, and Sk,
respectively, equal to

Ik�t� = �
t�=0

�I−1

ik�t − t�� , �1�

Rk�t� = �
t�=�I

�I+�R−1

ik�t − t�� , �2�

Sk�t� = Pk − Ik − Rk = Pk − �
t�=0

�I+�R−1

ik�t − t�� . �3�

By definition of uncorrelated networks, when we follow a
randomly chosen edge to one of its end points, the probabil-
ity that we get to node with connectivity k is simply kPk / �k�,
independent of the node the edge started from. Here we used
the notation �k�=�hhPh. This is an expression of the fact that
high-degree vertices have more edges attached to them than
low-degree ones. In annealed networks, infected nodes also
form an uncorrelated network, which implies that if one fol-
lows a randomly chosen edge to one of its end points, then
the probability that the chosen edge goes to an infected node
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with connectivity k is kIk�t� / �k�. For convenience, we intro-
duce the following notations:

�k�i�t� = �
k

kik�t� , �4�

�k�I�t� = �
k

kIk�t� = �
t�=0

�I−1

�k�i�t − t�� . �5�

Thus, �k�i�t� is the average degree of nodes that first become
infected at time t and �k�I�t� is the average degree of the
population of all nodes in the infected state at time t. Obvi-
ously we have �k�i�t�� �k�I�t� and �k�I�t�� �k�. The probabil-
ity that a given end point of a random edge is connected to
an infected neighbor,

q�t� = �
k

kIk�t�/�k� = �k�I�t�/�k� . �6�

The probability that a node with connectivity k has exactly x
infected neighbors is given by the binomial distribution,

b�k,x� = �k

x
	q�t�x�1 − q�t��k−x. �7�

If a susceptible node has exactly x infected neighbors, then
the probability of infection is by definition �x /k in the linear
and 1− �1−��x in the nonlinear case. Taking the expectation
value of �x /k with respect to the above defined binomial
distribution yields the result that a susceptible node with con-
nectivity k is infected with probability �q�t� in one time step.
�That is, the probability that a susceptible node with x in-
fected neighbors is not infected is 1−�x /k, and the probabil-
ity that the node has exactly x infected neighbors is given by
the binomial distribution b�k ,x� �Eq. �7��. Thus, the probabil-
ity that infection occurs is �q�t�=1−�xb�k ,x��1−�x /k�.�
For the nonlinear contagion scheme this probability is 1
− �1−�q�t��k. We can now formulate our discrete time dy-
namical equations. The fraction of nodes infected at time
step t+1 equals the fraction of susceptible nodes multiplied
by the probability of infection,

ik�t + 1� = �
�k�I�t�

�k�
Sk�t� , �8�

for the linear contagion scheme and

ik�t + 1� = 
1 − �1 − �
�k�I�t�

�k�
	k�Sk�t� , �9�

for the nonlinear contagion scheme, where �k�I�t� and Sk�t�
are given by Eqs. �3� and �5�. Equations �8� and �9� define
discrete dynamical systems for the variables ik�t�. It is worth
noting that if only one connectivity is present in the degree
distribution, i.e., P�k�=�k,k0

for some k0, and we choose �I

=1,�R=0, then Eq. �8� simplifies to the logistic map. Equa-
tions �8� and �9�, similarly to the logistic map, show chaotic
behavior in certain parameter regions, period doubling, etc.
Here, however, we restrict our attention to study the transi-
tion from fixed points to solutions with explicit time depen-
dence.

In the present paper, our main interest is to understand the
interplay between network structure and the statistically
steady state of the disease. From this perspective, we distin-
guish three qualitatively different long time scenarios: �i� the
disease can die out, resulting in every node becoming sus-
ceptible; �ii� the disease can become prevalent resulting in
the average number of infected individuals becoming con-
stant in time; or �iii� the disease can become prevalent with
sustained oscillations. The first two scenarios correspond to
fixed points of the maps �Eqs. �8� and �9��, trivial ik�t�=0 and
nontrivial ik�t��0, respectively, while oscillating solutions
are characterized by the instability of both fixed points. We
note that oscillating solutions of Eqs. �8� and �9� are rarely
periodic and what we can observe, in general, is quasiperi-
odic behavior.

In Secs. III and IV, we examine the existence and the
linear stability of solutions for both contagion schemes. The
boundary that encompasses the stability regions of the two
fixed points will be a curve where the system undergoes a
Neimark bifurcation.

III. LINEAR CONTAGION SCHEME

A. Fixed points

Our purpose is to understand how the degree distribution
�Pk�, time delays ��I ,�R�, and infection probability � affect
the stability of prevalent, extinct, and oscillating solutions of
discrete dynamical system �8�. The first step in the following
analysis is to determine the fixed points corresponding to
map �8�. Insertion of Eqs. �1� and �3� into Eq. �8� yields

ik�t + 1� = �

�
t�=0

�I−1

�k�i�t − t��

�k� �Pk − �
t�=0

�I+�R−1

ik�t − t��	 ,

�10�

where �k�i�t�=�hhih�t�. Fixed points of the system, denoted
ik
�, are time independent and fulfill the equation

ik
� =

��I�k�i
�

�k�
�Pk − ��R + �I�ik

�� . �11�

The trivial solution ik
�=0 always exits and is the only solu-

tion if the infection rate � equals zero. We have the self-
consistency relation

�k�i
� = �

k

kik
� =

��I�k��k�i
�

�k� + ���I + �R��I�k�i
� , �12�

which for �k�i
��0 can be solved explicitly to yield

�k�i
� =

�k�
�I + �R

�1 −
1

��I
	 , �13�

ik
� =

Pk

�I + �R
�1 −

1

��I
	 . �14�

According to Eqs. �13� and �14� the distribution of infected
nodes is proportional to Pk. Ik and Sk are related to ik

� via the
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relationships Ik=�Iik
� and Rk=�Iik

�. Furthermore, because both
ik
� and �k�i

� are necessarily positive quantities, for 0��
�1 /�I, only the trivial �i�

k =0� solution exists. The critical
infection probability, denoted �0, marks the epidemic thresh-
old of the disease, and it is independent of network param-
eters

�0 = 1/�I. �15�

Since for ���0 both solutions exist and could be stable
simultaneously, stability analysis is required to determine the
system’s behavior. Linear stability of the fixed points can be
obtained by adding a small perturbation, ik�t�= ik

�+�ik�t�, and
neglecting terms beyond linear order,

�ik�t + 1� = �
Pk − ��I + �R�ik

�

�k� �
t�=0

�I−1

��k�i�t − t��

−
��I�k�i

�

�k� �
t�=0

�I+�R−1

�ik�t − t�� . �16�

Due to the presence of the terms ��k�i�t− t��, Eq. �16� is not
independent. The analysis, however, can be considerably
simplified if we multiply both sides by k and sum over k,

��k�i�t + 1� = �
�k� − ��I + �R��k�i

�

�k� �
t�=0

�I−1

��k�i�t − t��

−
��I�k�i

�

�k� �
t�=0

�I+�R−1

��k�i�t − t�� . �17�

With the notation

a = � − ���I + �R��k�i
�/�k� , �18�

b = − ��I�k�i
�/�k� , �19�

and xt=��k�i�t� we can rewrite Eq. �17�,

xt+1 = a�
t�=0

�I−1

xt−t� + b �
t�=0

�I+�R−1

xt−t�, �20�

where a=� and b=0 for the trivial and a=1 /�I and b
=−���I−1� / ��I+�R� for the nontrivial solutions given by
Eqs. �13� and �14�. Surprisingly, both a and b are indepen-
dent of Pk. As a result, stability of the fixed points is deter-
mined only by the time delays �I ,�R and �. Hence, for linear
contagion the underlying network structure is unimportant,
in contrast with the nonlinear scheme, where the role of de-
gree distribution is essential, as we will see in Sec V.

B. Shur stability

Equation �20� defines a linear �I+�R-dimensional discrete
time dynamical system. We devote some time to examine its
stability properties for arbitrary a and b because the general
results obtained will be used in the rest of the paper. In order
to determine the a, b pairs, where linear system �20� is
stable, we look for eigensolutions of Eq. �17�, in the form
xt=x0�t for complex �, leading to the algebraic equation

� = a�
r=0

�I−1

�−r + b �
r=0

�I+�R−1

�−r. �21�

Dynamical system �20� is stable if all roots of polynomial
�21� have absolute value smaller than one. Since a�0 and
b�0, we can restrict our attention to the lower right quarter
of the �a ,b� plane. Possible boundaries between stability and
instability can be determined by looking for solutions of Eq.
�21� on the complex unit circle �=ei	. If 	=0, we obtain
1=�Ia+ ��I+�R�b. If, however, 	�0, we can sum the trigo-
nometric series in Eq. �21� to obtain

a�	� =
sin���I + �R + 1�	/2�sin�	/2�

sin��I	/2�sin��R	/2�
, �22�

b�	� = −
sin���I + 1�	/2�sin�	/2�

sin���I + �R�	/2�sin��R	/2�
. �23�

Equations �22� and �23� for 0�	�2
 represent a discon-
tinuous curve that divides the �a ,b� plane into stable and
unstable regions. At this point, however, we do no know
which of these regions correspond to stable �a ,b� pairs. An
analytical solution to this problem can be worked out using
Shur’s theorem as given in Appendix, Sec. I. Also see �15�.
Here, we omit this part and determine the nature of the rel-
evant regions numerically. Stability regions of Eq. �20� in the
lower right quarter plane are shown in Fig. 1. The curves
encompassing the region of stability can be easily identified.
The line corresponds to 1=�Ia+ ��I+�R�b, while the curve
starting at the point �a ,b�= �0,−1� is given by 	
→ �a�	� ,b�	��, as defined in Eqs. �22� and �23�. The para-
metric curve intersects the 1=�Ia+ ��I+�R�b line at 	=0 and
the a=0 axis at 	=2
 / ��I+�R+1�.

C. Phase diagram

As the line a�I+b��I+�R�=1 intersects the b=0 axis
at a=1 /�I, the stability criterion for the trivial solution �a
=� ,b=0� is a=��1 /�I=�0, i.e., the trivial fixed point is
unstable whenever the nonzero solution exists. A remarkable
feature of this critical point is that it is determined exclu-
sively by �I. For nontrivial solutions �13� and �14�, on the
other hand, we have a=1 /�I, b=−���I−1� / ��I+�R�, which
defines a vertical line starting at a=1 /�I as shown in Fig. 2.

0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

a

b

stable

unstable

a(φ),b(φ)

aτ
I
+(τ

I
+τ

R
)b = 1

φ=0

φ=2π/(τ
I
+τ

R
+1)

a =1/τ
I

FIG. 1. Stability regions for Eq. �21� for �I=2 and �R=2. The
straight line starting from point �a ,b�= �1 /�I ,0� corresponds to the
equation a�I+b��I+�R�=1, while the curve is given by Eqs. �22�
and �23�.
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The critical value of � where this line intersects the unstable
region, denoted �1, marks the Neimark-bifurcation point
where oscillating solutions emerge. If �1�1 for fixed �I and
�R, then oscillations do not occur. We can obtain a simple
approximation for �1 by taking the tangent of the parametric
curve at 	=0, point �a0 ,b0� as shown in Fig. 2, and calcu-
lating � where this tangent intersects the line given by a
=1 /�I and b=−���I−1� / ��I+�R�. A simple calculation yields

�1 − �0

�0
�

2��I + 1�
�R + 1

for �R � �I and �0 =
1

�I
. �24�

Details of the derivation are discussed in Appendix, Sec. II.
We note that the accuracy of Eq. �24� improves with increas-
ing �R and it provides an excellent approximate value for �1.
A simple consequence of Eq. �24� is that �1 converges to
�0=1 /�I as �R→�, and for large �R the region where preva-
lence exists without oscillations disappears.

We summarize our results in Fig. 3 for �I=4. Regions
corresponding to prevalence, extinction, and oscillatory so-
lutions are shown as functions of � and �R. The solid line
separating the oscillatory and prevalent regions represents
the full numerical solution of Eq. �17�, while the dashed
curve represents approximation �24�. We find excellent quan-
titative agreement. The infection rate �1 asymptotically ap-
proaches �0=1 /�I. Moreover, if �I=2, then for �R�4 we do
not have an oscillatory phase for any ��1. In general, for a
given �I we need a minimum number of time steps spent in
the recovered phase to observe oscillations, in good agree-
ment with Eq. �24�.

IV. NONLINEAR SCHEME

We have seen in Sec. III C that emergence of prevalent
and oscillatory solutions for linear contagion was indepen-
dent of the degree distribution. Introduction of nonlinearity,
however, leads to explicit dependence on the network struc-
ture. In this section, we first explore the properties of the
nontrivial fixed points, and we then turn to presentation of
the analytical characterization of the oscillatory phase.

A. Fixed points

The discrete time dynamical system in this case is given
by Eq. �9�. Its fixed points, denoted ik

�, must satisfy

ik
� = Pk

1 − �1 − �I�
�k�i

�

�k�
	k

1 + ��I + �R� − ��I + �R��1 − �I�
�k�i

�

�k�
	k . �25�

Equation �25� provides solutions in terms of the parameter
�k�i

�. With the introduction of f�x�,

f�x� = �
h

hPh
1 − �1 − �I�
x

�k�
	h�

1 + ��I + �R� − ��I + �R��1 − �I�
x

�k�
	h , �26�

the self-consistency requirement, �hhik
�= �k�i

�, is equivalent
to the fixed point problem f�x��=x�, where x�= �k�i

� as shown
in Fig. 4. f�0�=0 is always satisfied, and, for xmax

�k� /��I, we have the inequality

f�xmax� =
�k�

�I + �R + 1
� xmax. �27�

Furthermore, because f�x� is concave �f��0�, f�x� intersects
the x line at a point x�0 if and only if f��0��1, yielding the
existence condition f��0�=��I�k2� / �k��1. As a result, for a
given degree distribution we obtain the epidemic threshold,

�0 =
�k�

�I�k2�
. �28�

Equation �28� agrees with the result obtained for the SIR
model �4� if we choose specifically �I=1. An important con-
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I
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R
)b = 1

(a
0
,b

0
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FIG. 2. Approximation of the border of stability region with a
tangent starting at point �a0 ,b0� for �I=2 and �R=2.
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FIG. 3. �Color online� Phase portrait of Eq. �10� with �I=4. The
solid curve separating oscillatory and prevalent solutions is ob-
tained from full numerical solution of Eq. �10�, while the dotted
curve is given by Eq. �24�.
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FIG. 4. �Color online� Solution of the fixed point problem x
= f�x�, where f�x� is given by Eq. �26�.
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sequence of Eq. �28� is that for divergent �k2� we get �0=0,
e.g., for a power-law degree distribution Pk�k−�, with ex-
ponent ��3, any nonzero infection probability leads to an
epidemic outbreak, provided that the network has infinitely
many nodes.

Since the nonzero fixed point f�x��=x� is attractive
�f��x���1�, successive application of the map for any x0
�0 converges to the solution x�=limn→� fn�x0�. It is easy to
see that �k�i

� is an increasing function of � �its derivative is
given explicitly in Appendix, Sec. II.� and, under conditions
discussed below, it asymptotically approaches �k�i

max

= �k� / ��R+�I+1�, as shown in Fig. 5. Indeed, this asymptotic
behavior is valid if �x− f�x���=1
1 at x= �k� / ��R+�I+1�. Us-
ing the explicit form of f�x� this condition is satisfied if
�hhPh��R / ��R+�I��h
 �k�.

Motivated by the results of linear case �13�, we approxi-
mate �k�i

� with �k�i
��a+b /�, which, considering the

asymptotic behavior of �k�i
� and the condition �k�i

� ��=�0
=0,

yields

�k�i
� �

�k�
�I + �R + 1

�1 −
�0

�
	 1

1 − �0
for � � �0. �29�

We will not provide rigorous proof of Eq. �29� but note that
it agrees with the exact solution within 5% provided
�hhPh��R / ��R+�I��h
 �k�. Accordingly, the fraction of in-
fected individuals can be approximated by

I� �
�I

�I + �R + 1
�1 −

�0

�
	 1

1 − �0
for � � �0. �30�

We will compare Eq. �30� with experimental results in Sec.
V.

B. Stability

After obtaining existence condition for the time-
independent solutions of the discrete time dynamical equa-
tions we now turn to examine their stability. Adding a small
perturbation to ik

�, i.e., ik�t�= ik
�+�ik�t�, and neglecting terms

beyond linear order yields

�ik�t + 1� = ��
t�=0

�I−1

��k�i�t − t��	ak − bk �
t�=0

�I+�R−1

�ik�t − t�� ,

�31�

where

ak =
k�

�k�
�Pk − ��I + �R�ik

���1 − �I�
�k�i

�

�k�
	k−1

, �32�

bk = 1 − �1 − �I�
�k�i

�

�k�
	k

. �33�

An important difference between Eqs. �31� and �17� is that
bk’s depend explicitly on the coordination number k, and,
unless Pk=�k,k0

for some k0, we cannot handle the problem
analytically in its full generality. Nevertheless, the trivial
case ��k�i

�=0� can be solved exactly. If �k�i
�=0, then Eq. �31�

yields

�ik�t + 1� = ��
t�=0

�I−1

��k�i�t − t��	 k�

�k�
Pk. �34�

Multiplying both sides by k and summing, we obtain

��k�i�t + 1� = ��
t�=0

�I−1

��k�i�t − t��	 �k2��
�k�

, �35�

which is Eq. �20� with b=0 and a=��k2� / �k�. As discussed
in Sec. III A, the condition for stability in this case is a
=��k2� / �k��1 /�I or equivalently ���0. Therefore, the
trivial fixed point is unstable whenever the nonzero solution
exists. If �ik�t��0, then we look for eigensolutions of Eq.
�31� in the form �ik�t�=rk�

t. Substitution of �ik�t�=rk�
t into

Eq. �31� yields

rk =

ak�
h

hrh

� + bk �
t�=0

�I−1

�−t�

�
t�=0

�I+�R−1

�−t�. �36�

Multiplying both sides of Eq. �36� with k and summing lead
to the self-consistency relation,

1 = �
h

hah

� + bh �
t�=0

�I+�R−1

�−t�

�
t�=0

�I−1

�−t�. �37�

In particular, the system is stable if all � solutions of Eq. �37�
lie inside the complex unit cycle. Since bk=0 at �=�0 for all
k, we can obtain a perturbative solution of Eq. �37� for �
−�0
1, bk
1 as follows. For bk=0 we obtain the zeroth-
order expression,
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0

0.5
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〈k
〉 i*

µ
0

〈 k〉/(τ
R

+τ
I
+1)

FIG. 5. �Color online� Stability regions for the nonlinear scheme
as a function of �R and infection probability � for �I=2. Results for
the full numerical simulation �solid curve� are compared to the ap-
proximation corresponding to Eq. �41� �dashed curve� for the de-
gree distribution Pk=�k,10.
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�

�
h

hah

= �
t�=0

�I−1

�−t�. �38�

If bk�0, we take the first-order approximation of
the quotient in Eq. �37�, i.e., 1 / �1+bh�t�=0

�I+�R−1
�−t�−1��1

−bh�t�=0
�I+�R−1

�−t�−1, to obtain

� = �
h

hah �
t�=0

�I−1

�−t� − �
h

hahbh �
t�=0

�I+�R−1

�−t��
t�=0

�I−1

�−t�−1.

�39�

Finally, we replace the sum �t�=0
�I−1

�−t�−1 in the second �pertur-
bative� term with Eq. �38�,

� = �
h

hah �
t�=0

�I−1

�−t� −

�
h

hahbh

�
h

hah

�
t�=0

�I+�R−1

�−t�. �40�

Note that Eq. �40� is exact if Pk=�k,k0
for some k0. Introduc-

ing the notation a=�hhah and b=�hhahbh /�hhah, polyno-
mial �40� corresponds exactly to Eq. �21�, and therefore the
results obtained for its stability in Sec. III can be applied.
Since for �−�0
1 we have bk�k��−�0�, we can expect
Eq. �40� to be a good approximation if the network has few
highly connected nodes. We also find that the accuracy of
Eq. �40� improves with increasing �R. We have a=1 /�I and
b=0 at �=�0, independent of the degree distribution, and
the curve �→ �a��� ,b���� intersects the b=0 axis with a
tangent db /da=2�I �see Appendix, Sec. II�. The infection
probability where the curve �→ �a��� ,b���� enters the in-
stability region of Eq. �40� is the Neimark-bifurcation point
�1. For �−�0
1, we can substitute a and b with their first-
order Taylor expansion �given in Appendix, Sec. II� and fol-
low the same argument that leads to Eq. �24� �i.e., approxi-
mating the boundary of instability with a line�, leading to

�1 − �0

�0
�

2��I + 1���I + �R�
�R��I + �R − �I

2/2�
, �41�

where �0 is given by Eq. �28�. In the �R��I limit,

�1 − �0

�0
�

2��I + 1�
�R

as �R → � . �42�

Asymptotically, we obtain the same behavior as in linear
case �24�. However, for small �R there is a significant differ-
ence between these two systems. Figure 6 shows the stability
regions for the nonlinear contagion scheme for Pk=�k,10 and
�I=2. The solid line separating oscillating and fixed point
solutions is obtained from the full numerical solution of Eq.
�31�, while the dashed curve is given by Eq. �41�. We find
excellent agreement. However, for �I��R, from numerical
simulations we find that Eq. �41� does not provide accurate
results. Therefore, in this case we chose to determine the
occurrence instability numerically. Qualitatively, the reason
for this inaccuracy is that for �I��R we have �1��0, and

first-order Taylor-expansion of a and b will no longer pro-
vide reliable results. Figure 7 shows regions of stability ob-
tained for a power-law degree distribution with variable ex-
ponent �, i.e., Pk�k−�, for �I=4 and �R=2. We applied an
upper cutoff of Pk at k=100. The phase portrait is shown as
a function of the exponent � and infection probability, re-
vealing strong dependence on �, in particular, oscillations are
completely absent if � falls below a critical value. We find
that this behavior is typical of fat tailed distributions and can
also be observed for Pk�e−�k if ��0.1. We note that the
numerical solution of Eq. �31� requires extra attention when
��1 because in this region the system is marginally stable,
and usually a large number of time steps are necessary to
determine the stability properties of the fixed point �on the
order of 106�.

V. NUMERICAL RESULTS FOR FIXED
NETWORK STRUCTURE

To asses how well our annealed results apply to a fixed
network structure, we implemented the SIRS model on a
network consisting of 1.5�104 nodes for both contagion
schemes. Each node on the network was initialized randomly
in either a susceptible, infected, or recovered state. The time
counter of the infected and recovered nodes was also set
randomly between 1, . . . ,�I and �I , . . . ,�R, respectively. After
initialization, we waited 8�103 time steps to allow the tran-
sients related to initial conditions to relax. If we denote the
time counter of a node k by �k��k�0, . . . ,�I+�R� and the
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FIG. 6. �Color online� �k�i
� as a function of the infection rate �

for Pk=�k,10, �I=2, and �R=2.

2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

γ

µ

prevalence with
oscillations

prevalence

FIG. 7. �Color online� Stability regions for nonlinear contagion
obtained from full numerical solution of Eq. �31�, with Pk�k−�,
�I=4, and �R=2.
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number of nodes by N, then emergence of oscillations can be
well characterized by the synchronization parameter �6–9�

��t� = � 1

N
�

k

e�k2
i/��I+�R�� , �43�

where the sum is taken over all nodes of the network except
the susceptible ones ��k=0�. The appearance of persistent
oscillations corresponds to synchronization of elements in
the system. Their phases, �k, in the epidemic cycle become
synchronized as the disease process proceeds. This synchro-
nization is captured by ��t�, which plays the role of an order
parameter �6�. After transients relax, we calculate ��t� aver-
aged over 200 realizations taken over a period of 2�103

time steps.

A. Linear contagion

For linear contagion, we demonstrate that the obtained
results are independent of the degree distribution, as sug-
gested by our annealed theory. On the other hand, we evalu-
ate how accurately our analytical considerations predict the
phase transitions between extinction and prevalence �13� and
�14� and the fixed point solution and oscillatory phase �24�.
For a given network structure, we fix �I=4 and we run a
series of simulations for different �R and Pk. We find that the
higher the average coordination number of the network �k�,
the better the agreement between our mean-field results and
numerical simulations. In general, �k��15 provides excel-
lent correspondence between theory and experiment. Simi-
larly, increasing �R improves the reliability of our mean-field
results. We argue that the reason for this is that recovered
elements in the network do not interact. The longer the re-
covered stage, the fewer individuals are active �susceptible
or infected� at a given time instant, making the network ef-
fectively sparse. Thus, large �R has a tendency to diminish
correlations, leading to mean-field behavior. By contrast, for
�I��R correlations are expected to have more of an effect.

We generate uncorrelated networks for the degree distri-
butions Pk��k,10, Pk��k,15, Pk�e−0.1k, and Pk�k−3. For
both the exponential and the power-law cases we take Pk
=0 for k�10 and k�100. We applied the cutoff for large
connectivities to limit finite size effects. Figure 8 shows �
versus � for two distinct distributions. The solid curve cor-
responds to an exponential distribution, while the dashed

corresponds to a power-law distribution. Apparently, the
curves are almost identical, supporting the mean-field result.
Figure 9 compares the number of infected individuals as a
function of infection rate for mean-field approximations �13�
and �14� �solid curve� and numerical simulations �dashed
curve�. Again we find excellent agreement. Most importantly,
the theoretical epidemic threshold, �=1 /�I, agrees very well
with our numerical results. Figure 10 compares �1
�Neimark-bifurcation point� for the mean-field results with
the experiments for Pk=�k,10 �dotted curve� and Pk=�k,15
�dashed curve� versus the time delay �R. Figure 10 illustrates
that with increasing �k� we approach the mean-field results.

B. Nonlinear contagion

For nonlinear contagion, we first verify that the approxi-
mation given in Eq. �30� accurately gives the fraction of
infected nodes. Figure 11 compares the experimental results
�dashed curve� with formula �30� for �I=1, �R=4, and Pk
�k−4, indicating good agreement. Figure 12 compares the
experimental results for a fixed network structure with nu-
merical solution of annealed mean-field Eq. �31� for �1
�Neimark-bifurcation point�. The curves are almost identical.
However, if �I��R, the mean-field approximation does not
agree well with our numerical simulations. We conjecture
that this can be attributed to the increased presence of corre-
lations. While the epidemic threshold is still well character-
ized by Eq. �28�, the Neimark-bifurcation ��1� displays con-
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FIG. 8. �Color online� Comparison of experimental results of �
with distributions Pk�e−0.1k and Pk�k−3 for �I=4, �R=7, and N
=1.5�104 �linear contagion�.
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FIG. 9. �Color online� Comparison of experimental �dashed
curve� and mean-field results �13� and �14� �continuous curve� for
the fraction of infected individuals �I� for �I=4, �R=4, Pk�e−0.1k,
and N=1.5�104 �linear contagion�.
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FIG. 10. �Color online� Comparison of mean-field result �24�
�continuous curve� with experimental results for the Hopf-
bifurcation point �1 as a function of �R for the distributions Pk

=�k,15 �dashed curve� and Pk=�k,10 �dotted curve� for �I=4 and N
=1.5�104 �linear contagion�.
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siderable disagreement between the annealed theory and the
fixed network simulation. Figure 13 shows numerical results
for �1 and a fixed network structure with �I=4, �R=2, and
Pk�k−� for variable exponent. Comparison of Figs. 7 and 13
reveals, unlike in mean-field theory, for a fixed network
structure, small � promotes oscillations.

VI. CONCLUSION

In this paper we have developed a mean-field theory for
the discrete time-step SIRS model for the two most com-
monly studied contagion schemes. We found that for linear
contagion the stability of prevalent, extinct, and oscillatory
solutions is independent of the network structure, and the
model behavior is determined exclusively by the time delays
and infection probability. Numerical simulations for a fixed
network structure were in excellent agreement with our the-
oretical predictions. By contrast, for the nonlinear contagion
scheme, the epidemic threshold ��0� and occurrence of Ne-
imark bifurcation ��1� depend strongly on the underlying
network. However, the asymptotic behavior of the dimen-
sionless quantity ��1−�0� /�0 is the same for both schemes
as �R→� �Eqs. �24� and �41��. We also found that the im-
portance of the degree distribution is even more pronounced
if the duration of infected stage exceeds �R, i.e., �I��R. Re-
ferring to Fig. 7 we see that oscillations can be completely
absent for power-law degree distributions with small expo-
nents. In the case �I��R, however, predictions of mean-field
theory do not agree well with numerical simulations for a
fixed network structure. We attribute this fact to correlations,

which are not incorporated in the mean-field approach. In
summary, we have shown that the discrete time SIRS model
exhibits rich dynamical behavior even within the framework
of uncorrelated networks and that the contagion scheme,
time delays, and infection probability play a vital role in
determining model behavior.
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APPENDIX

1. Shur stability

The asymptotic stability of polynomial �21� is strongly
connected to Shur’s theorem. A polynomial is stable if all of
its roots have absolute value smaller than 1. In general, it is
possible to associate a characteristic polynomial

w�z� = a0zn + ¯ + an−1z + an �A1�

with the symmetric matrix P=S1
TS1−S2

TS2, where

S1 =�
a0 . . . an−2 an−1

0 � ] an−2

] � ]

0 0 0 a0

�, S2 =�
an . . . an−1 a1

0 � ] a2

] � ]

0 0 0 an

� .

The polynomial w�z� is asymptotically stable if and only if
the matrix P is positive definite. According to Sylvester’s
criterion this requirement is satisfied if all determinants as-
sociated with the upper left submatrices are positive, provid-
ing us an analytical approach to determine the stability re-
gions of Eq. �21� as polynomials of a and b. If we denote the
nth upper left subdeterminant of P with pn, then for a given
�a ,b� pair det�pn��0 for all n is a necessary and sufficient
condition for stability. The curves separating the stable and
unstable regions �22� and �23� correspond to det�pn�=0.
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FIG. 13. �Color online� Experimental results for the Hopf-
bifurcation point �1 for Pk�k−� as a function of the exponent �,
�I=4, �R=2, and N=2�104.
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2. Linear approximation

The location where the two instability curves intersect is
given by �a0 ,b0� in Fig. 2. This position can be calculated by
taking the 	→0 limit of expressions �22� and �23�,

a0 = lim
	→0

a�	� =
�I + �R + 1

�I�R
,

b0 = lim
	→0

b�	� = −
�I + 1

�R��I + �R�
.

The derivative db /da �	=0 is most easily evaluated using a
symbolic mathematical software package,

�db

da
�

	=0
= �db/d	

da/d	
�

	=0
= �I

�R − 1

��I + �R���R + 1�
.

For the nonlinear contagion scheme Taylor expansions of
�hhah and �hhahbh with respect to the parameter � yield

a = �
h

hah �
1

�I
+

� − �0

�0

�I

��I + �R�
, �A2�

b = �
h

hahbh � −
� − �0

�0

2�I

�I + �R
. �A3�

To obtain formulas �A2� and �A3� we used the identity
���k�i

� ��=�0
= ��I / ��I+�R���k2�3 / ��k��k3��, which is a conse-

quence of Eq. �37�.
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